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The following variational principle is obtained for the entropy S(E) of a system with energy E: 
S (E) ^ — k In (Trace U2) for all non-negative Hermitian density matrices U with Trace U — 1, Trace HU — E', 
H is the Hamiltonian and k is Boltzmann's constant. The equality sign is realized with this principle for the 
density matrix of the microcanonical ensemble, as well as for a wide class of similar ensembles (in the limit 
of large volume). 

I. INTRODUCTION 

T HE object of this note is to give a simple varia­
tional bound to the entropy S(E) at energy E: 

S(E)^-kln(Tra.ceU2) (1) 

for all Hermitian density matrices U (with no negative 
eigenvalues) for which Trace U=l and Trace HU—E; 
H is the Hamiltonian and k is Boltzmann's constant. 
The principle (1) has the advantage that U2 is in general 
much easier to evaluate than U In £7 which appears in 
the conventional bound given by von Neumann1: 

S(E)^-k Trace UhiU. (2) 

The optimum density matrix 
equality sign in (1) is realized is 

UQ for which the 

UQ= (p/e*)e-swik i (E+2/0-\)d&($), (3) 
\<E+2/0 

where k/3=dS(E)/dE is the reciprocal temperature and 
H=J*\dJ&(\) is the spectral resolution of the Hamil­
tonian1 ; if H has a discrete spectrum of eigenvalues Ei 
and eigenstates \i), then j£(X) = ]!Cj^^|i)(i|. The 
precise value of the normalization constant in (3) 
depends on the definition adopted for the entropy; the 
definition used here is 

^w/*=:TraceJ£(JB) 
= number of eigenvalues of H^E. 

1 J. von Neumann, Mathematische Grundlagen der Quanten-
mechanik (Springer-Verlag, Berlin/Vienna, 1932); [English 
transl.: by R. T. Beyer (Princeton University Press, Princeton. 
1955)]. 

It should be noted that while U0 gives the optimum 
bound in (1), a wide class of density matrices U actually 
gives the equality sign apart from terms of relative 
order 1/iV, where N is the number of particles. For 
example, the microcanonical ensemble matrix 

Um=e-sw'*Z&(E)-£(Ed] (5) 

with Ei<E gives the correct entropy S(E) when sub­
stituted in (1). 

PROOF OF (1). 

To prove (1) we start from (2) and write U—V 
/Trace V where V is non-negative, Hermitian, and 
satisfies Trace (H—E)V=0, but is not required to be 
normalized to unit trace. This gives 

S(E)^k In (Trace V) - k (Trace Fin F)/TraceF. (6) 

Now if x is a non-negative real number we have from 
elementary algebra —xbix^x—x2. Since all the 
eigenvalues of V are non-negative by assumption, it 
follows that -Trace V lnF^Trace ( F - V2); hence 

S(E)^k In (Trace F)+^(TraceCF-F2])/Trace V. (7) 

Let us now replace V by XV where X is a real number, 
and maximize the right-hand side of (7) with respect 
to X for a given V. This yields, for the optimum X, 

(4) \ = (Trace F)/Trace V2 or Trace(XF-X2F2) = 0. 

Hence the density matrix VQ which optimizes the bound 
in (7) must satisfy Trace(F0-Fo2)=0. Thus the 
principle S (E)^k In (Trace Vi), where VL is further 
restricted by Trace (Fi—Fi2) = 0, will yield the same 
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optimum bound as (7). If we now write Fi=£//Trace 
U2 where Trace Z7=l, which automatically satisfies 
the condition Trace (Fi~Fi2) = 0, then we obtain the 
principle (1). 

At first sight it might appear unlikely that the 
equality sign could ever be realized in (1), since the 
equality — xkix=x—x2 holds only for x=0 and #=1 . 
However, with the micro canonical ensemble matrix 
Um given by (5), all the eigenvalues of Z7m/Trace Um

2 

are in fact equal to 0 or 1, so that Um does indeed give 
the correct entropy. £On the other hand, the canonical 
ensemble matrix, U=e~PB/Trace e~fiH, which gives 
the correct entropy in (2), fails to do so when substi­
tuted into (1).] 

THE OPTIMUM DENSITY MATRIX U<> 

Let us now prove the result (3) for the density matrix 
Uo which gives the true maximum for the right-hand 
side of (1). \_UQ actually gives an entropy greater by 
k(2—ln2) than does the microcanonical ensemble matrix 
UtnQ First, we observe that the optimum U must 
commute with the Hamiltonian H. For, if not, write 
U=Ux+U%mth 

(Ui)ik=Uij6 i=k 
=0 iy*k, 

where the matrix elements refer to a representation in 
which H is diagonal. Then Ux commutes with H, 

Trace Ux=Trace Z7=l, 
Trace HUi=Trace HU=E, 

Trace UiU2=0, 
Trace E/2=Trace tf^+Trace £72

2>Trace Ux
2, 

- A In (Trace Z72)<~£ In (Trace Ux
2) . 

I Hence Ux, which commutes with H, gives a better 
bound on the entropy than does U. 

Assuming then that U commutes with H, choose a 
representation in which both U and H are diagonal 
with eigenvalues Ui and E{, respectively. We have 

S(E)£-khi£tiUt subject to Ui^Q, 

It is now a straightforward matter to maximize with 
respect to Ui, using the method of Lagrange multipliers. 
This yields for the eigenvalues of the optimum density 
matrix 

Ui=C(E+2/p-E,) Ei<E+2/p, 
=0 Ei^E+2/0. 

The two constants C and & are Lagrange multipliers 
which we must determine by the conditions Trace 
U= 1 and Trace HU=E. We show that kp=dS(E)/dE 

andC=(/Ve2)e- s w /*. 

Trace U—C^EiKE+2/p (E+2/0-Ei) 

=c 

CI (E+2/p-X)d£es<-»">] 
\<B+i/0 

k 
(JS+2/jS-XH 

S'Qi) 

k2 d 1 

S'(X)d\S'(\)' 

•, S(X) / t - | 

r J X=#+2/0 

on repeatedly integrating by parts. The lower limit for 
X is quite irrelevant because of the dominance of the 
term esw/k at the upper limit, the entropy being pro­
portional to the volume of the system. Now each term 
in the above expansion is of order 1/N compared to the 
previous term. Hence, retaining only the leading term 
for large N 

Ck / 1 \ 
l = Trace£7= e^(Xw)/fc+relative order [ — 1, 

where \m=E+2/j3. Similarly we find 

2Ck r l k i 
0=Trace (H-E)U=—— 

S'(XJU S'(A»)J 

8(\m)lk 

(Xw)L/3 S'(\m) 

+relative order a 
whence 

and 
kp=S'(Xm)=S'(E)+ order (1/N) 

S'(Xm) fi 
C= e-s(*»>)/*=_e-s(B)/*-)-relative order 

k <? 0-
Thus we obtain for the eigenvalues of the optimum 

density matrix U0 

Ui=(p/e2)(E+2/l3-Ei) EiKE+2/p 
= 0 E&E+2/0. 

This completes the proof of (3). 

DISCUSSION 

Corresponding to the bound (1) for the entropy we 
have the related variation principles for the free-
energy F and the thermodynamic potential U=—PV: 

F^Tmce HU+ (1/0) ln(Trace U2), (8) 

QgTrace(£T-A* Nop) U+ (1/0) In (Trace U2), (9) 

where U is non-negative, Hermitian, and has unit 
trace; in (9) the formalism of second quantization is 
used, iVop is the number operator and JJL the chemical 
potential. 



S I M P L E V A R I A T I O N A L B O U N D T O E N T R O P Y A1217 

As an application, let us show how the principle (9) 
can be used to obtain the Husimi equations2 for the 
variationally best independent-particle model. As 
trial density matrix in (9) we take3 

U= (constant)0(X--J?), (10) 

where 

k,k' 

ak is the annihilation operator in an arbitrary repre­
sentation, X and jkkf are variation parameters and 6 is 
the step function: 

6(x)=Q x<0 

= 1 x>0 

for a real argument x, while the step function of an 
operator is to be understood in the sense given by von 
Neumann.1 The trial matrix (10) may be regarded as 
that of a microcanonical ensemble for an effective 
Hamiltonian 3,A and we seek the best such, i.e., that 
which optimizes the bound (9). 

Let us write 

£ (\) = InCTrace 0(X-J?)], 

£=<*E(X)/dA, 
U= exp(-J3H)/Tmce exp(-#H) . 

U may be regarded as the grand canonical ensemble 
matrix which corresponds to the microcanonical 
ensemble matrix (10); because of the well-known 

2 K. Husimi, Proc. Phys. Maths. Soc. Japan, ̂ 2 , 264(1940). 
3 We could equally well take the form e(\-H)-6(\i-S) with 

Xi<X; because of the rapid increase of Trace 0(\—H) with X, the 
second term is quite irrelevant. 

4 Strictly, H corresponds to an effective one-particle H—jtNop, 
rather than to a Hamiltonian. 

equivalence of the grand and microcanonical ensembles5 

U will give the same statistical averages of extensive 
variables as does U, apart from terms of relative order 
]nN/N or 1/N. Thus 

Tmce(H-fxNop)U^Tmce(H-fxNop)U 
-m(Trace£7 2 )=i ;00 

~ -Trace UkiU, 

where the neglected terms are irrelevant in the limit of 
large volume. Hence (9) gives 

O^Trace (H-^Nop+ (1 /$ InE/)U. 

This is precisely the conventional bound to 0 corre­
sponding to (2), using a grand canonical-type inde­
pendent-particle matrix U. 

Thus the trial matrix (10) used to optimize the 
bound (9) will simply reproduce the Husimi formalism.6 

Finally, we note that (1) and (2) are special cases of a 
more general principle, true for any positive number a: 

S(E)^-(k/a) In (Trace U*+1) 

subject to U non-negative, Trace £7=1, Trace HU=E. 
This principle is readily proved from (2) by using the 
inequality 

—xlnx^ix—x^/a, for a>0, # = 0 , 

(1) is obtained by taking a=l} and (2) by letting 

5 The equivalence may be shown in the present case by writing 
the step function in (10) as an integral transform: 

0 (X-F) = ;r-; / ^—— dp, where c>0. 

After carrying out the statistical averages using the operator 

eP(\-mf 

we then perform the integration over^/3 using the saddle-point 
method; only the neighborhood of # = $ contributes significantly. 

6 I t should be noted that U would not lead to the Husimi equa­
tions if used as a trial density matrix in (9). Indeed, U does not 
give the correct value of O in (9) even in the absence of inter­
action. 


